
\begin{tabular}{|l|l|}
\hline Q.19 & The $Z$-transform of a discrete signal $x[n]$ is \\
& $X(z)=\frac{4 z}{\left(z-\frac{1}{5}\right)\left(z-\frac{2}{3}\right)(z-3)}$ with $R O C=R$ \\
Which one of the following statements is true? \\
\hline
- & Discrete-time Fourier transform of $\mathrm{x}[\mathrm{n}]$ converges if $R$ is $|z|>3$ \\
\hline - & Discrete-time Fourier transform of $\mathrm{x}[\mathrm{n}]$ converges if $R$ is $\frac{2}{3}<|z|<3$ \\<br />
\hline
- & $\begin{array}{l}\text { Discrete-time Fourier transform of } \mathrm{x}[\mathrm{n}] \text { converges if } R \text { is such that } \mathrm{x}[\mathrm{n}] \text { is a left- } \\
\text { sided sequence }\end{array}$ \\
\hline - & $\begin{array}{l}\text { Discrete-time Fourier transform of } \mathrm{x}[\mathrm{n}] \text { converges if } R \text { is such that } \mathrm{x}[\mathrm{n}] \text { is a right- } \\
\text { sided sequence }\end{array}$ \\
\hline
\end{tabular}