0 votes

Let $\left ( -1 -j \right ), \left ( 3 -j \right ), \left ( 3 + j \right )$ and $\left ( -1+ j \right )$ be the vertices of a rectangle $C$ in the complex plane. Assuming that $C$ is traversed in counter-clockwise direction, the value of the contour integral $\oint _{C}\dfrac{dz}{z^{2}\left ( z-4 \right )}$ is

- $j\pi /2$
- $0$
- $-j\pi /8$
- $j\pi /16$