GO Electrical
Ask us anything
Toggle navigation
GO Electrical
Email or Username
Password
Remember
Login
Register

I forgot my password
Activity
Questions
Hot!
Unanswered
Tags
Subjects
Users
Ask
New Blog
Blogs
Exams
Recent questions tagged eigenvalues
0
votes
0
answers
1
GATE201335
A matrix has eigenvalues $1$ and $2$. The corresponding eigenvectors are $\begin{bmatrix} 1\\1 \end{bmatrix}$ and $\begin{bmatrix} 1\\2 \end{bmatrix}$ respectibely. The matrix is $\begin{bmatrix} 1 & 1\\ 1 & 2 \end{bmatrix}$ ... $\begin{bmatrix} 1 & 0\\ 0 & 2 \end{bmatrix}$ $\begin{bmatrix} 0& 1\\ 2 & 3 \end{bmatrix}$
asked
Feb 12, 2017
in
Others
by
piyag476
(
1.5k
points)
gate2013ee
linearalgebra
matrix
eigenvalues
eigenvectors
0
votes
1
answer
2
GATE201421
Which one of the following statements is true for all real symmetric matrices? All the eigenvalues are real. All the eigenvalues are positive. All the eigenvalues are distinct. Sum of all the eigenvalues is zero.
asked
Feb 12, 2017
in
Linear Algebra
by
makhdoom ghaya
(
9.3k
points)
gate2014ee2
eigenvalues
eigenmatrix
0
votes
0
answers
3
GATE2014146
A system matrix is given as follows. $A=\begin{bmatrix} 0 & 1 & 1\\ 6 & 11 &6 \\ 6& 11& 5 \end{bmatrix}$ The absolute value of the ratio of the maximum eigenvalue to the minimum eigenvalue is _______
asked
Feb 12, 2017
in
Linear Algebra
by
makhdoom ghaya
(
9.3k
points)
gate2014ee1
linearalgebra
eigenvalues
eigenmatrix
numericalanswers
0
votes
0
answers
4
GATE2015126
The maximum value of "a" such that the matrix $\begin{pmatrix} 3&0&2 \\ 1&1&0 \\ 0&a&2 \end{pmatrix}$ has three linearly independent real eigenvectors is $\frac{2}{3\sqrt{3}}$ $\frac{1}{3\sqrt{3}}$ $\frac{1+2\sqrt{3}}{3\sqrt{3}}$ $\frac{1+\sqrt{3}}{3\sqrt{3}}$
asked
Feb 12, 2017
in
Linear Algebra
by
makhdoom ghaya
(
9.3k
points)
gate2015ee1
eigenvalues
eigenmatrix
0
votes
0
answers
5
GATE2016128
Let the eigenvalues of a $2 \times 2$ matrix $A$ be $1, 2$ with eigenvectors $x_{1}$ and $x_{2}$ respectively. Then the eigenvalues and eigenvectors of the matrix $A^{2}3A+4I$ would, respectively, be $2, 14; x_{1}, x_{2}$ $2, 14; x_{1}+ x_{2}, x_{1}  x_{2}$ $2, 0; x_{1}, x_{2}$ $2, 0; x_{1}+ x_{2}, x_{1}  x_{2}$
asked
Jan 30, 2017
in
Linear Algebra
by
makhdoom ghaya
(
9.3k
points)
gate2016ee1
eigenmatrix
eigenvalues
To see more, click for the
full list of questions
or
popular tags
.
Welcome to GATE Overflow, Electrical, where you can ask questions and receive answers from other members of the community.
Follow @csegate
Gatecse
912
questions
38
answers
10
comments
27,188
users