0 votes

\begin{tabular}{|l|l|}

\hline Q.38 & $\begin{array}{l}\text { Consider a lead compensator of the form } \\

\qquad K(s)=\frac{1+\frac{s}{a}}{1+\frac{s}{\beta a}}, \beta>1, a>0 \\

\text { The frequency at which this compensator produces maximum phase lead is } 4 \mathrm{rad} / \mathrm{s} . \\

\text { At this frequency, the gain amplification provided by the controller, assuming } \\

\text { asymptotic Bode-magnitude plot of } K(s), \text { is } 6 \mathrm{~dB} \text {. The values of } a, \beta, \text { respectively, } \\

\text { are }\end{array}$ \\

\hline

- & 1,16 \\

\hline - & 2,4 \\

\hline - & 3,5 \\

\hline - & $2.66,2.25$ \\

\hline & \\

\hline

\end{tabular}