GO Electrical
Ask us anything
Toggle navigation
GO Electrical
Email or Username
Password
Remember
Login
Register
|
I forgot my password
Activity
Questions
Hot!
Unanswered
Tags
Subjects
Users
Ask
New Blog
Blogs
Exams
Highest voted questions in Control Systems
Recent
Hot!
Most votes
Most answers
Most views
Featured
Previous GATE
Recent
Hot!
Most votes
Most answers
Most views
Featured
Previous GATE
0
votes
0
answers
1
GATE2013-40
The signal flow graph for a system is given below. The transfer function $\dfrac{Y(s)}{U(s)}$ for this system is $\dfrac{s+1}{5s^2+6s+2}$ $\dfrac{s+1}{s^2+6s+2}$ $\dfrac{s+1}{s^2+4s+2}$ $\dfrac{1}{5s^2+6s+2}$
asked
Feb 12, 2017
in
Control Systems
by
piyag476
(
1.5k
points)
gate2013-ee
controllers
stability
0
votes
0
answers
2
GATE2013-28
The open-loop transfer function of a dc motor is given as $\dfrac{\omega (s)}{V_a(s)}=\dfrac{10}{1+10s}$.When connected in feedback as shown below, the approximate value of $K_a$ that will reduce the time constant of the closed loop system by one hundred times as compared to that of the open-loop system is $1$ $5$ $10$ $100$
asked
Feb 12, 2017
in
Control Systems
by
piyag476
(
1.5k
points)
gate2013-ee
feed-back-system
closed-loop-system
0
votes
0
answers
3
GATE2013-13
In the feedback network shown below,if the feedback factor $k$ is increased, then the input impedance increases and output impedance decreases. input impedance increases and output impedance also increases. input impedance decreases and output impedance also decreases. input impedance decreases and output impedance increases.
asked
Feb 12, 2017
in
Control Systems
by
piyag476
(
1.5k
points)
gate2013-ee
network-analysis
branches
0
votes
0
answers
4
GATE2013-15
The Bode plot of a transfer function $G(s)$ is shown in the figure below. The gain $\big(20 \log\mid G(s) \mid \big)$ is $32 dB$ and $-8 dB$ at $1$ rad/s and $10$ rad/s respectively. The phase is negative for all $\omega$. Then $G(s)$ is $\frac{39.8}{s} \\$ $\frac{39.8}{s^2} \\$ $\frac{32}{s} \\$ $\frac{32}{s^2}$
asked
Feb 12, 2017
in
Control Systems
by
piyag476
(
1.5k
points)
gate2013-ee
gain
stability
0
votes
0
answers
5
GATE2013-2
The transfer function $\dfrac{V2(s)}{V1(s)}$ of the circuit shown below is $\dfrac{0.5s+1}{s+1}$ $\dfrac{3s+6}{s+2}$ $\dfrac{s+2}{s+1}$ $\dfrac{s+1}{s+2}$
asked
Feb 12, 2017
in
Control Systems
by
piyag476
(
1.5k
points)
gate2013-ee
block-diagram
voltage-source
0
votes
0
answers
6
GATE2013-3
Assuming zero initial condition, the response $y(t)$ of the system given below to a unit step input $u(t)$ is? $u(t)$ $t\:u(t)$ $\dfrac{t^2}{2}u(t)$ $e^{-t}u(t)$
asked
Feb 12, 2017
in
Control Systems
by
piyag476
(
1.5k
points)
gate2013-ee
impulse-response
step-function
0
votes
0
answers
7
GATE2013-5
Which of the following statement is NOT TRUE for a continuous time causal and stable $LTI$ system? All the poles of the system must lie on the left side of $j\omega$ axis Zeros of the system can lie anywhere in the $s$ – plane All the poles must lie within $\mid s\mid=1$ All the roots of the characteristic equation must be located on the left side of $j\omega$ axis
asked
Feb 12, 2017
in
Control Systems
by
piyag476
(
1.5k
points)
gate2013-ee
stability
block-diagram
0
votes
0
answers
8
GATE2014-3-46
The magnitude Bode plot of a network is shown in the figure The maximum phase angle $\phi _m$ and the corresponding gain $G_m$ respectively, are $-30^{\circ}$ and $1.73$ $dB$ $-30^{\circ}$ and $477$ $dB$ $+30^{\circ}$ and $4.77$ $dB$ $+30^{\circ}$ and $1.73$ $dB$
asked
Feb 12, 2017
in
Control Systems
by
makhdoom ghaya
(
9.3k
points)
gate2014-ee-3
bode-plot
stability
0
votes
0
answers
9
GATE2014-3-44
The block diagram of a system is shown in the figure If the desired transfer function of the system is $\frac{C(s)}{R(s)}=\frac{s}{s^2+s+1}$ then $G(s)$ is $1$ $s$ $1/s$ $\frac{-s}{s^3+s^2-s-2}$
asked
Feb 12, 2017
in
Control Systems
by
makhdoom ghaya
(
9.3k
points)
gate2014-ee-3
feedback
closed-loop-system
0
votes
0
answers
10
GATE2014-3-45
Consider the system described by following state space equations $\begin{vmatrix} \dot{x_1}\\ \dot{x_2} \end{vmatrix}=\begin{vmatrix} 0 &1 \\ -1 & -1 \end{vmatrix}\begin{vmatrix} x_1\\x_2 \end{vmatrix}+\begin{vmatrix} 0\\1 \end{vmatrix}u$ ... $u$ is unit step input, then the steady state error of the system is $0$ $1/2$ $2/3$ $1$
asked
Feb 12, 2017
in
Control Systems
by
makhdoom ghaya
(
9.3k
points)
gate2014-ee-3
state-space-functions
steady-state-error
0
votes
0
answers
11
GATE2014-3-17
The signal flow graph of a system is shown below. $U(s)$ is the input and $C(s)$ is the output. Assuming, $h_1=b_1$ and $h_0=b_0-b_1a_1$ , the input-output transfer function, $G(s)=\frac{C(s)}{U(s)}$ of the system is given by $G(s)=\frac{b_0s+b_1}{s^2+a_0s+a_1} \\ $ $G(s)=\frac{a_1s+a_0}{s^2+b_1s+b_0} \\ $ $G(s)=\frac{b_1s+b_0}{s^2+a_1s+a_0} \\$ $G(s)=\frac{a_0s+a1}{s^2+b_0s+b_1}$
asked
Feb 12, 2017
in
Control Systems
by
makhdoom ghaya
(
9.3k
points)
gate2014-ee-3
stability
bode-plot
0
votes
0
answers
12
GATE2014-3-18
A single-input single-output feedback system has forward transfer function $G(s)$ and feedback transfer function $H(s)$. It is given that $|G(s)H(s)|< 1$ . Which of the following is true about the stability of the system? The system is always stable The ... are in left half of the s-plane It is not possible to say whether or not the system is stable from the information given
asked
Feb 12, 2017
in
Control Systems
by
makhdoom ghaya
(
9.3k
points)
gate2014-ee-3
transfer-function
feed-back-system
0
votes
0
answers
13
GATE2014-2-44
A system with the open loop transfer function $G(s)=\frac{K}{s(s+2)(s^2+2s+2)}$ is connected in a negative feedback configuration with a feedback gain of unity. For the closed loop system to be marginally stable, the value of $K$ is ______
asked
Feb 12, 2017
in
Control Systems
by
makhdoom ghaya
(
9.3k
points)
gate2014-ee-2
negative-feedback
marginally-stable
numerical-answers
0
votes
0
answers
14
GATE2014-2-45
For the transfer function $G(s)=\frac{5(s+2)}{s(s+0.25)(s^2+4s+25)}$ The values of the constant gain term and the highest corner frequency of the Bode plot respectively are $3.2$ , $5.0$ $16.0$ , $4.0$ $3.2$ , $4.0$ $16.0$ , $5.0$
asked
Feb 12, 2017
in
Control Systems
by
makhdoom ghaya
(
9.3k
points)
gate2014-ee-2
transfer-function
gain
bode-plot
0
votes
0
answers
15
GATE2014-2-46
The second order dynamic system $\frac{dX}{dt}=PX+Qu$ $y=RX$ has the matrices $P$, $Q$ and $R$ as follows: $P=\begin{bmatrix} -1 & 1\\ 0& -3 \end{bmatrix}$ ... system has the following controllability and observability properties: Controllable and observable Not controllable but observable Controllable but not observable Not controllable and not observable
asked
Feb 12, 2017
in
Control Systems
by
makhdoom ghaya
(
9.3k
points)
gate2014-ee-2
dynamic-system
controlability
0
votes
0
answers
16
GATE2014-2-33
A discrete system is represented by the difference equation $\begin{bmatrix} X_1(k+1)\\ X_2(k+2) \end{bmatrix}=\begin{bmatrix} a & a-1\\ a+1 & a \end{bmatrix}\begin{bmatrix} X_1(k)\\X_2(k) \end{bmatrix}$ It has initial conditions $X_1(0)$ = $1$; $X_2(0)$ = $0$. The pole locations of the system for $a$ = $1$, are $1\pm j0$ $-1\pm j0$ $\pm 1+j0$ $0\pm j1$
asked
Feb 12, 2017
in
Control Systems
by
makhdoom ghaya
(
9.3k
points)
gate2014-ee-2
bode-plot
stability-study
0
votes
0
answers
17
GATE2014-2-17
The closed loop transfer function of a system is $T(s)=\frac{4}{s^2+0.4S+4}$ The steady state error due to unit step input is __________.
asked
Feb 12, 2017
in
Control Systems
by
makhdoom ghaya
(
9.3k
points)
gate2014-ee-2
unit-step-function
closed-loop-system
numerical-answers
0
votes
0
answers
18
GATE2014-2-9
Consider an LTI system with transfer function $H(s)=\frac{1}{s(s+4)}$ If the input to the system is $cos(3t)$ and the steady state output is $Asin(3t+\alpha )$ , then the value of $A$ is $1/30$ $1/15$ $3/4$ $4/3$
asked
Feb 12, 2017
in
Control Systems
by
makhdoom ghaya
(
9.3k
points)
gate2014-ee-2
linear-time-invariant-system
transfer-function
0
votes
0
answers
19
GATE2014-1-44
For the given system, it is desired that the system be stable. The minimum value of $\alpha$ for this condition is ____________. .
asked
Feb 12, 2017
in
Control Systems
by
makhdoom ghaya
(
9.3k
points)
gate2014-ee-1
feed-back-system
stability
numerical-answers
0
votes
0
answers
20
GATE2014-1-51
In the figure shown, assume the op-amp to be ideal. Which of the alternatives gives the correct Bode plots for the transfer function $\dfrac{V_o(\omega )}{V_i(\omega )}?$
asked
Feb 12, 2017
in
Control Systems
by
makhdoom ghaya
(
9.3k
points)
gate2014-ee-1
transfer
function
operational-amplifier
0
votes
0
answers
21
GATE2014-1-18
The root locus of a unity feedback system is shown in the figure The closed loop transfer function of the system is $\frac{C(s)}{R(s)}=\frac{K}{(s+1)(s+2)}$ $\frac{C(s)}{R(s)}=\frac{-K}{(s+1)(s+2)+K}$ $\frac{C(s)}{R(s)}=\frac{K}{(s+1)(s+2)-K}$ $\frac{C(s)}{R(s)}=\frac{K}{(s+1)(s+2)+K}$
asked
Feb 12, 2017
in
Control Systems
by
makhdoom ghaya
(
9.3k
points)
gate2014-ee-1
stability
bode-plot
0
votes
0
answers
22
GATE2015-2-24
An open loop control system results in a response of $e^{-2t}(\sin 5t+\cos 5t)$ for a unit impulse input. The $DC$ gain of the control system is ________.
asked
Feb 12, 2017
in
Control Systems
by
makhdoom ghaya
(
9.3k
points)
gate2015-ee-2
open-loop-system
independant-system
numerical-answers
0
votes
0
answers
23
GATE2015-2-25
Nyquist plots of two functions $G_{1}(s)$ and $G_{2}(s)$ are shown in figure. Nyquist plot of the product of $G_{1}(s)$ and $G_{2}(s)$ is
asked
Feb 12, 2017
in
Control Systems
by
makhdoom ghaya
(
9.3k
points)
gate2015-ee-2
stability
real-roots
imaginary-roots
0
votes
0
answers
24
GATE2015-2-11
The operational amplifier shown in the figure is ideal. The input voltage (in Volt) is $V_{i} = 2 \sin(2\pi × 2000t)$. The amplitude of the output voltage $V_{0}$ (in Volt) is ________.
asked
Feb 12, 2017
in
Control Systems
by
makhdoom ghaya
(
9.3k
points)
gate2015-ee-2
operational-amplifier
pid-controller
numerical-answers
0
votes
0
answers
25
GATE2015-1-55
The open loop poles of a third order unity feedback system are at $0, −1, −2$. Let the frequency corresponding to the point where the root locus of the system transits to unstable region be $K$. Now suppose we introduce a zero in the open loop ... corresponds to a frequency less than $K$ It corresponds to a frequency $K$ Root locus of modified system never transits to unstable region
asked
Feb 12, 2017
in
Control Systems
by
makhdoom ghaya
(
9.3k
points)
gate2015-ee-1
root-locus
unity-feedback-system
0
votes
0
answers
26
GATE2015-1-52
In the signal flow diagram given in the figure, $u_{1}$ and $u_{2}$ are possible inputs whereas $y_{1}$ and $y_{2}$ are possible outputs. When would the SISO system derived from this diagram be controllable and observable? When $u_{1}$ is the only input and $y_{1}$ is ... is the only input and $y_{2}$ is the only output. When $u_{2}$ is the only input and $y_{2}$ is the only output.
asked
Feb 12, 2017
in
Control Systems
by
makhdoom ghaya
(
9.3k
points)
gate2015-ee-1
flow-diagram
transfer-function
0
votes
0
answers
27
GATE2015-1-53
The transfer function of a second order real system with a perfectly flat magnitude response of unity has a pole at $(2 − j3)$. List all the poles and zeroes. Poles at $(2 \pm j3)$, no zeroes. Poles at $(\pm 2 − j3)$, one zero at origin. Poles at $(2 − j3)$, $(−2 + j3)$, zeroes at $(−2 − j3)$, $(2 + j3)$. Poles at $(2 \pm j3)$, zeroes at $(−2 \pm j3)$.
asked
Feb 12, 2017
in
Control Systems
by
makhdoom ghaya
(
9.3k
points)
gate2015-ee-1
second-order-real-system
poles
zeroes
0
votes
0
answers
28
GATE2015-1-39
The op-amp shown in the figure has a finite gain $A = 1000$ and an infinite input resistance. A step-voltage $V_{i} = 1 mV$ is applied at the input at time $t = 0$ as shown. Assuming that the operational amplifier is not saturated, the time constant (in millisecond) of the output voltage $V_{0}$ is $1001$ $101$ $11$ $1$
asked
Feb 12, 2017
in
Control Systems
by
makhdoom ghaya
(
9.3k
points)
gate2015-ee-1
time-constant
operational-amplifier
0
votes
0
answers
29
GATE2015-1-24
A Bode magnitude plot for the transfer function $G(s)$ of a plant is shown in the figure. Which one of the following transfer functions best describes the plant? $\frac{1000(s+10)}{s+1000}$ $\frac{10(s+10)}{s(s+1000)}$ $\frac{s+1000}{10s(s+10)}$ $\frac{s+1000}{10(s+10)}$
asked
Feb 12, 2017
in
Control Systems
by
makhdoom ghaya
(
9.3k
points)
gate2015-ee-1
bode-plot
stability
0
votes
0
answers
30
GATE2015-1-25
For the signal-flow graph shown in the figure, which one of the following expressions is equal to the transfer function $\frac{Y(s)}{X_{2}(s)}\mid _{X_{1}(s)=0}$ ? $\frac{G_{1}}{1+G_{2}(1+G_{1})}$ $\frac{G_{2}}{1+G_{1}(1+G_{2})}$ $\frac{G_{1}}{1+G_{1}G_{2}}$ $\frac{G_{2}}{1+G_{1}G_{2}}$
asked
Feb 12, 2017
in
Control Systems
by
makhdoom ghaya
(
9.3k
points)
gate2015-ee-1
signal-flow-graph
transfer-function
0
votes
0
answers
31
GATE2015-1-10
The impulse response $g(t)$ of a system, $G$, is as shown in Figure $(a)$. What is the maximum value attained by the impulse response of two cascaded blocks of $G$ as shown in Figure $(b)$? $\frac{2}{3}$ $\frac{3}{4}$ $\frac{4}{5}$ $1$
asked
Feb 12, 2017
in
Control Systems
by
makhdoom ghaya
(
9.3k
points)
gate2015-ee-1
impulse-response
cascaded-blocks
0
votes
0
answers
32
GATE2015-1-13
Consider the circuit shown in the figure. In this circuit $R=1 k\Omega$, and $C=1 \mu F$. The input voltage is sinusoidal with a frequency of $50$ Hz, represented as a phasor with magnitude $V_{i}$ and phase angle $0$ radian as shown in the figure. The output voltage is ... $0$ $\pi$ $\frac{\pi}{2}$ $-\frac{\pi}{2}$
asked
Feb 12, 2017
in
Control Systems
by
makhdoom ghaya
(
9.3k
points)
gate2015-ee-1
operational-amplifier
feedback-system
0
votes
0
answers
33
GATE2016-2-52
The gain at the breakaway point of the root locus of a unity feedback system with open loop transfer function $G(s)=\frac{Ks}{(s-1)(s-4)}$ is $1$ $2$ $5$ $9$
asked
Jan 30, 2017
in
Control Systems
by
makhdoom ghaya
(
9.3k
points)
gate2016-ee-2
gain
breakaway-point
unity-feedback-system
0
votes
0
answers
34
GATE2016-2-50
A second-order real system has the following properties: a) the damping ratio $\zeta=0.5$ and undamped natural frequency $\omega _{n}=10$ rad/s b) the steady state value of the output, to a unit step input, is $1.02$. The transfer function of the system is $\frac{1.02}{s^{2}+5s+100}$ $\frac{102}{s^{2}+10s+100}$ $\frac{100}{s^{2}+10s+100}$ $\frac{102}{s^{2}+5s+100}$
asked
Jan 30, 2017
in
Control Systems
by
makhdoom ghaya
(
9.3k
points)
gate2016-ee-2
damping-ratio
natural-frequency
0
votes
0
answers
35
GATE2016-2-39
The open loop transfer function of a unity feedback control system is given by $G(s)=\frac{k(s+1)}{s(1+Ts)(1+2S)'}, K > 0, T > 0.$ The closed loop system will be stable if $0 < T < \frac{4(K+1)}{K-1}$ $0 < K < \frac{4(T+2)}{T-2}$ $0 < K < \frac{T+2}{T-2}$ $0 < T < \frac{8(k+1)}{K-1}$
asked
Jan 30, 2017
in
Control Systems
by
makhdoom ghaya
(
9.3k
points)
gate2016-ee-2
transfer-function
unity-feedback-control-system
0
votes
0
answers
36
GATE2016-1-30
Consider the following asymptotic Bode magnitude plot (ω is in rad/s). Which one of the following transfer functions is best represented by the above Bode magnitude plot? $\frac{2s}{(1+0.5s)(1+0.25s)^{2}}$ $\frac{4(1+0.5s)}{s(1+0.25s)}$ $\frac{2s}{(1+2s)(1+4s)}$ $\frac{4s}{(1+2s)(1+4s)^{2}}$
asked
Jan 30, 2017
in
Control Systems
by
makhdoom ghaya
(
9.3k
points)
gate2016-ee-1
logarithmic-plot
gain-k
integral-and-derivative-factor
0
votes
0
answers
37
GATE2016-1-31
Consider the following state-space representation of a linear time-invariant system. $x(t)=\begin{pmatrix} 1&0 \\ 0&2 \end{pmatrix} x(t), y(t)= c^{T} x(t), c =\begin{pmatrix} 1& \\ 1& \end{pmatrix} \text {and} x(0)= \begin{pmatrix} 1& \\ 1& \end{pmatrix}$ The value of y(t) for $t =\log_{e} 2$ is __________.
asked
Jan 30, 2017
in
Control Systems
by
makhdoom ghaya
(
9.3k
points)
gate2016-ee-1
transformation
state-space-equations
correlation
numerical-answers
0
votes
0
answers
38
GATE2016-1-32
Loop transfer function of a feedback system is $G(s)H(s)=\frac{s+3}{s^{2}(s-3)}$. Take the Nyquist contour in the clockwise direction. Then, the Nyquist plot of $G(s) H (s)$ encircles $-1 + j0$ Once in clockwise direction Twice in clockwise direction Once in anticlockwise direction Twice in anticlockwise direction
asked
Jan 30, 2017
in
Control Systems
by
makhdoom ghaya
(
9.3k
points)
gate2016-ee-1
closed-loop-system
nyquist-stability
mapping
0
votes
0
answers
39
GATE2016-1-6
The transfer function of a system is $\frac{Y(s)}{R(s)}=\frac{s}{s+2}$. The steady state output $y(t)$ is $A \cos (2t + \phi)$ for the input $\cos (2t)$. The values of A and $\phi$ respectively are $\frac{1}{\sqrt{2}}$, -45° $\frac{1}{\sqrt{2}}$, +45° $\sqrt{2}$, -45° $\sqrt{2}$, +45°
asked
Jan 30, 2017
in
Control Systems
by
makhdoom ghaya
(
9.3k
points)
gate2016-ee-1
laplace-transform
convolution-integral
feed-back-transfer-function
0
votes
0
answers
40
GATE2016-1-7
The phase cross-over frequency of the transfer function $G(s)=\frac{100}{(s+1)^{3}}$ in rad/s is $\sqrt{3}$ $\frac{1}{\sqrt{3}}$ $3$ $3\sqrt{3}$
asked
Jan 30, 2017
in
Control Systems
by
makhdoom ghaya
(
9.3k
points)
gate2016-ee-1
mathematical-representation
cross-over-frequency
180-phase-shift
bode-stability-criteria
To see more, click for the
full list of questions
or
popular tags
.
Welcome to GATE Overflow, Electrical, where you can ask questions and receive answers from other members of the community.
All categories
Engineering Mathematics
76
Electrical Circuits
59
Electromagnetic Fields
27
Signals and Systems
40
Electrical Machines
44
Power Systems
71
Control Systems
40
Electrical and Electronic Measurements
16
Analog and Digital Electronics
55
Others
307
General Aptitude
112
Follow @csegate
Gatecse
847
questions
37
answers
10
comments
26,092
users