GO Electrical
Ask us anything
Toggle navigation
GO Electrical
Email or Username
Password
Remember
Login
Register

I forgot my password
Activity
Questions
Hot!
Unanswered
Tags
Subjects
Users
Ask
New Blog
Blogs
Exams
Hot questions in Signals and Systems
0
votes
0
answers
1
GATE2015235
The $z$Transform of a sequence $x[n]$ is given as $X(z)=2z+44/z+3/z^{2}$. If $y[n]$ is the first difference of $x[n]$, then $Y(z)$ is given by $2z+28/z+7/z^{2}3/z^{3}$ $2z+26/z+1/z^{2}3/z^{3}$ $2z2+8/z7/z^{2}+3/z^{3}$ $4z28/z1/z^{2}+3/z^{3}$
asked
Feb 12, 2017
in
Signals and Systems
by
makhdoom ghaya
(
9.3k
points)
gate2015ee2
sequence
complexfrequencydomainrepresentation
0
votes
0
answers
2
GATE2015135
Consider a discrete time signal given by $x[n]= (0.25)^{n} u[n]+(0.5)^{n} u [n1]$ The region of convergence of its $Z$transform would be The region inside the circle of radius $0.5$ and centered at origin The region outside the circle ... centered at origin The annular region between the two circles, both centered at origin and having radii $0.25$ and $0.5$ The entire $Z$ plane.
asked
Feb 12, 2017
in
Signals and Systems
by
makhdoom ghaya
(
9.3k
points)
gate2015ee1
discretetimesignal
convergence
0
votes
0
answers
3
GATE20134
The impulse response a the system is $h(t)=t\:u(t).$ For an input $u(t1)$, the output is $\frac{t^2}{2}u(t)$ $\frac{t(t1)}{2}u(t1)$ $\frac{(t1)^2}{2}u(t1)$ $\frac{t^21}{2}u(t1)$
asked
Feb 12, 2017
in
Signals and Systems
by
piyag476
(
1.5k
points)
gate2013ee
fouriertransform
samplingtheorem
0
votes
0
answers
4
GATE20136
Two systems with impulse responses $h_1(t)$ and $h_2(t)$ are connected in cascade.then the overall impulse response of the cascaded system is given by Product of $h_1(t)$ and $h_2(t)$ Sum of $h_1(t)$ and $h_2(t)$ convolution of $h_1(t)$ and $h_2(t)$ subtraction of $h_2(t)$ from $h_1(t)$
asked
Feb 12, 2017
in
Signals and Systems
by
piyag476
(
1.5k
points)
gate2013ee
convolution
multiplication
addition
0
votes
0
answers
5
GATE201439
A signal is represented by $x(t)=\begin{cases} 1 & \mid t \mid<1 \\ 0 & \mid t \mid >1 \end{cases}$ The Fourier transform of the convolved signal $y(t)$= $x(2t)*x(t/2)$ is $\frac{4}{\omega ^2} \sin(\frac{\omega }{2})sin(2\omega )$ $\frac{4}{\omega ^2} \sin(\frac{\omega }{2})$ $\frac{4}{\omega ^2} \sin(2\omega )$ $\frac{4}{\omega ^2} \sin^2\omega $
asked
Feb 12, 2017
in
Signals and Systems
by
makhdoom ghaya
(
9.3k
points)
gate2014ee3
fouriertransform
convolution
0
votes
0
answers
6
GATE2014333
A continuoustime $LTI$ system with system function $H(w)$ has the following polezero plot. For this system, which of the alternatives is $TRUE$? $H(0)> H(w);w> 0$ H(w) has multiple maxima, at $w_1$ and $w_2$ $H(0)< H(w);w> 0$ H(w)=constant; $\infty < w< \infty$
asked
Feb 12, 2017
in
Signals and Systems
by
makhdoom ghaya
(
9.3k
points)
gate2014ee3
polezeroplot
lineartimeinvariantsystem
0
votes
0
answers
7
GATE2015229
Consider a signal defined by $x(t)= = \begin{cases} e^{j10 t} & \text{for} t\leq 1 \\ 0& \text{for } t > 1 \end{cases}$ Its Fourier Transform is $\frac{2 \sin (\omega 10)}{\omega  10}$ $2e^{j10}\frac{ \sin (\omega 10)}{\omega  10}$ $\frac{2 \sin \omega}{\omega  10}$ $e^{j10 \omega }\frac{2 \sin\omega }{\omega }$
asked
Feb 12, 2017
in
Signals and Systems
by
makhdoom ghaya
(
9.3k
points)
gate2015ee2
fourieranalysis
causalsystem
0
votes
0
answers
8
GATE201317
For a periodic signal $v(t) = 30 \sin100t +10 \cos 300t + 6 \sin (500t+\pi /4)$, the fundamental frequency in $rad/s$ is $100$ $300$ $500$ $1500$
asked
Feb 12, 2017
in
Signals and Systems
by
piyag476
(
1.5k
points)
gate2013ee
periodicity
sinusoidal
0
votes
0
answers
9
GATE2014332
A series $RLC$ circuit is observed at two frequencies. At $ω_1$=$1$ $krad/s$, we note that source voltage $V_1$=$100\angle 0^{\circ}$ $V$ results in a current $I_1=0.03\angle 31^{\circ}$ $A$. At $w_2$=$2$ $krad/s$, the source voltage $V_2$=$100\angle 0^{\circ}$ $V$ results in a current ... $C=25 \mu F$ $R=50\Omega$ ; $L=50 mH$ ,$C=5 \mu F$ $R=50\Omega$ ; $L=5 mH$ ,$C=50 \mu F$
asked
Feb 12, 2017
in
Signals and Systems
by
makhdoom ghaya
(
9.3k
points)
gate2014ee3
rcfilter
rlfilter
0
votes
0
answers
10
GATE2014335
A differentiable non constant even function $x(t)$ has a derivative $y(t)$, and their respective Fourier Transforms are $X(w)$ and $Y(w)$ . Which of the following statements is TRUE? $X(w)$ and $Y(w)$ are both real. $X(w)$ is real and $Y(w)$ is imaginary. $X(w)$ and $Y(w)$ are both imaginary. $X(w)$ is imaginary and $Y(w)$ is real.
asked
Feb 12, 2017
in
Signals and Systems
by
makhdoom ghaya
(
9.3k
points)
gate2014ee3
evenfunctions
fouriertransform
0
votes
0
answers
11
GATE2014210
Consider an $LTI$ system with impulse response $h(t)=e^{5t}u(t)$ . If the output of the system is $y(t)=e^{3t}u(t)e^{5t}u(t)$ then the input, $x(t)$, is given by $e^{3t}u(t)$ $2e^{3t}u(t)$ $e^{5t}u(t)$ $2e^{5t}u(t)$
asked
Feb 12, 2017
in
Signals and Systems
by
makhdoom ghaya
(
9.3k
points)
gate2014ee2
impulseresponse
ltisystem
0
votes
0
answers
12
GATE2016127
Let $S=\sum_{n=0}^{\infty} n\alpha^{n}$ where $\alpha < 1$. The value of $\alpha$ in the range $0 < \alpha < 1$, such that $S=2 \alpha$ is _________.
asked
Jan 30, 2017
in
Signals and Systems
by
makhdoom ghaya
(
9.3k
points)
gate2016ee1
fouriertransform
samplingtheorem
ztransform
numericalanswers
0
votes
0
answers
13
GATE2016135
The output of a continuoustime, linear timeinvariant system is denoted by $T\left\{x(t)\right\}$ where $x(t)$ is the input signal. A signal $z(t)$ is called eigensignal of the system $T$, when $T\left\{z(t)\right\}=\gamma z(t)$ where $\gamma$ is ... eigenvalues $\sin(t)$ is an eigensignal but $\cos(t)$ is not $\cos(t)$ and $\sin(t)$are both eigensignals with identical eigenvalues
asked
Jan 30, 2017
in
Signals and Systems
by
makhdoom ghaya
(
9.3k
points)
gate2016ee1
impulseresponse
stepresponse
convolution
0
votes
0
answers
14
GATE201625
Suppose the maximum frequency in a bandlimited signal $x(t)$ is $5 kHz$. Then, the maximum frequency in $x(t)\cos(2000\pi t)$, in $kHz$, is ________.
asked
Jan 30, 2017
in
Signals and Systems
by
makhdoom ghaya
(
9.3k
points)
gate2016ee2
highpassfilter
lowpassfilter
continuoustimesignal
numericalanswers
0
votes
0
answers
15
GATE2016218
Consider a linear timeinvariant system with transfer function $H(s)=\frac{1}{(s+1)}$ If the input is $\cos(t)$ and the steady state output is $A \cos(t+\alpha)$ then the value of $A$ is _________.
asked
Jan 30, 2017
in
Signals and Systems
by
makhdoom ghaya
(
9.3k
points)
gate2016ee2
linear
translationinvariant
convolution
impulseresponse
numericalanswers
0
votes
0
answers
16
GATE201613
The Laplace Transform of $f(t)=e^{2t} \sin (5t)(ut)$ is $\frac{5}{s^{2}4s+29}$ $\frac{5}{s^{2}+5}$ $\frac{s2}{s^{2}4s+29}$ $\frac{5}{s +5}$
asked
Jan 30, 2017
in
Signals and Systems
by
makhdoom ghaya
(
9.3k
points)
gate2016ee1
unitstepfunction
fouriertransform
shiftingtheorems
0
votes
0
answers
17
GATE2016210
Let $f(x)$ be a real, periodic function satisfying $f(x)=f(x)$. The general form of its Fourier series representation would be $f(x)=a_{0}+\sum_{k=1}^{\infty}a_{k}\cos(kx)$ $f(x)=\sum_{k=1}^{\infty}b_{k}\sin(kx)$ $f(x)=a_{0}+\sum_{k=1}^{\infty}a_{2k}\cos(kx)$ $f(x)=\sum_{k=0}^{\infty}a_{2k+1}\sin(2k+1)x$
asked
Jan 30, 2017
in
Signals and Systems
by
makhdoom ghaya
(
9.3k
points)
gate2016ee2
fourierseriescoefficient
harmonics
dirichletconditions
0
votes
0
answers
18
GATE2016228
Let $x_{1}(t)\leftrightarrow X_{1}(\omega )$ and $x_{2}(t)\leftrightarrow X_{2}(\omega )$ be two signals whose Fourier Transforms are as shown in the figure below. In the figure, $h(t)=e^{2t}$ denotes the impulse response. For the system shown above, the minimum sampling ... $2B_{1}$ $2(B_{1}+B_{2})$ $4(B_{1}+B_{2})$ $\infty$
asked
Jan 30, 2017
in
Signals and Systems
by
makhdoom ghaya
(
9.3k
points)
gate2016ee2
evenfunctions
impulseresponse
exponentialfunction
0
votes
0
answers
19
GATE201618
Consider a continuoustime system with input $x(t)$ and output $y(t)$ given by $y(t)=x(t) \cos (t)$. This system is Linear and timeinvariant Nonlinear and timeinvariant Linear and timevarying Nonlinear and timevarying
asked
Jan 30, 2017
in
Signals and Systems
by
makhdoom ghaya
(
9.3k
points)
gate2016ee1
samplingtheorem
scalingproperties
causalsystem
0
votes
0
answers
20
GATE2016134
Suppose $x_{1}(t)$ and $x_{2}(t)$ have the Fourier transforms as shown below. Which one of the following statements is TRUE? $x_{1}(t)$ and $x_{2}(t)$ are complex and $x_{1}(t) x_{2}(t)$is also complex with nonzero imaginary part $x_{1}(t)$ and $x_{2}(t)$ ... but $x_{1}(t) x_{2}(t)$ is real $x_{1}(t)$ and $x_{2}(t)$ are imaginary but $x_{1}(t) x_{2}(t)$ is real
asked
Jan 30, 2017
in
Signals and Systems
by
makhdoom ghaya
(
9.3k
points)
gate2016ee1
mirror
signal
Page:
« prev
1
2
Welcome to GATE Overflow, Electrical, where you can ask questions and receive answers from other members of the community.
All categories
Engineering Mathematics
76
Electrical Circuits
59
Electromagnetic Fields
27
Signals and Systems
40
Electrical Machines
44
Power Systems
71
Control Systems
40
Electrical and Electronic Measurements
16
Analog and Digital Electronics
55
Others
307
General Aptitude
112
Follow @csegate
Gatecse
847
questions
38
answers
10
comments
26,458
users