GO Electrical
Ask us anything
Toggle navigation
GO Electrical
Email or Username
Password
Remember
Login
Register

I forgot my password
Activity
Questions
Hot!
Unanswered
Tags
Subjects
Users
Ask
New Blog
Blogs
Exams
Hot questions in Engineering Mathematics
0
votes
0
answers
1
GATE201425
Consider the differential equation $x^2\frac{d^2y}{dx^2}+x\frac{dy}{dx}y=0$ . Which of the following is a solution to this differential equation for$x>0$? $e^x$ $x^2$ $1/x$ $lnx$
asked
Feb 12, 2017
in
Differential Equations
by
makhdoom ghaya
(
9.3k
points)
gate2014ee2
derivatives
equations
0
votes
0
answers
2
GATE2014128
The line integral of function $F = yzi$, in the counterclockwise direction, along the circle $x^2+y^2 = 1$ at $z = 1$ is $2\pi$ $\pi$ $\pi$ $2\pi$
asked
Feb 12, 2017
in
Calculus
by
makhdoom ghaya
(
9.3k
points)
gate2014ee1
lineintegral
circleequation
quadraticfunction
0
votes
0
answers
3
GATE2015226
The volume enclosed by the surface $f(x, y) = e^{x}$ over the triangle bounded by the lines $x = y; x = 0; y = 1$ in the $xy$ plane is ________.
asked
Feb 12, 2017
in
Calculus
by
makhdoom ghaya
(
9.3k
points)
gate2015ee2
lineequations
3dsystem
numericalanswers
0
votes
0
answers
4
GATE2014228
The minimum value of the function $f(x)=x^33x^224x+100$ in the interval $[3,3]$ is $20$ $28$ $16$ $32$
asked
Feb 12, 2017
in
Calculus
by
makhdoom ghaya
(
9.3k
points)
gate2014ee2
linearfunctions
0
votes
0
answers
5
GATE201431
Two matrices $A$ and $B$ are given below: $A=\begin{vmatrix} p & q\\ r & s \end{vmatrix}$ ; $B=\begin{vmatrix} p^2+q^2 & pr+qs\\ pr+qs &r^2+s^2 \end{vmatrix}$ If the rank of matrix $A$ is $N$, then the rank of matrix $B$ is $N/2$ $N$$1$ $N$ $2N$
asked
Feb 12, 2017
in
Linear Algebra
by
makhdoom ghaya
(
9.3k
points)
gate2014ee3
matrix
rank
0
votes
0
answers
6
GATE201413
The solution for the differential equation $\dfrac{d^2x}{dt^2}=9x,$ with initial conditions $x(0)=1$ and $\dfrac{dx}{dt}\mid_{t=0}=1$ , is $t^2+t+1$ $\sin3t+\frac{1}{3}\cos3t+\frac{2}{3}$ $\frac{1}{3}\sin3t+\cos3t$ $\cos3t+t$
asked
Feb 12, 2017
in
Differential Equations
by
makhdoom ghaya
(
9.3k
points)
gate2014ee1
boundarylimits
differential
equation
0
votes
0
answers
7
GATE2015127
A solution of the ordinary differential equation $\frac{d^{2}y}{dt^{2}}+5\frac{dy}{dt}+6y=0$ is such that $y(0) = 2$ and $y(1)= \frac{13e}{e^{3}}$. The value of $\frac{dy}{dt}(0)$ is _______.
asked
Feb 12, 2017
in
Differential Equations
by
makhdoom ghaya
(
9.3k
points)
gate2015ee1
ordinarydifferentialequation
numericalanswers
0
votes
0
answers
8
GATE20151GA8
The piechart below has the breakup of the number of students from different departments in an engineering college for the year $2012$. The proportion of male to female students in each department is $5:4$. There are $40$ males in ... What is the difference between the numbers of female students in the Civil department and the female students in the Mechanical department?
asked
Feb 12, 2017
in
Probability & Statistics
by
makhdoom ghaya
(
9.3k
points)
gate2015ee1
charts
stats
numericalanswers
0
votes
0
answers
9
GATE201336
$\displaystyle{}\oint \frac{z^24}{z^2+4}\: dz$ evaluated anticlockwise around the circle $\mid zi \mid=2$ , where $i=\sqrt{1}$, is $4\pi$ $0$ $2+\pi$ $2+2i$
asked
Feb 12, 2017
in
Differential Equations
by
piyag476
(
1.5k
points)
gate2013ee
integral
equations
0
votes
0
answers
10
GATE201323
Square roots of $i$,where $i=\sqrt{1}$, are $i,i$ $\cos(\frac{\pi }{4} )+i\sin(\frac{\pi }{4})+\cos(\frac{3\pi }{4})+i\sin(\frac{3\pi }{4})$ $\cos(\frac{\pi }{4} )+i\sin(\frac{3\pi }{4})+\cos(\frac{3\pi }{4})+i\sin(\frac{\pi }{4})$ $\cos(\frac{3\pi }{4} )+i\sin(\frac{3\pi }{4})+\cos(\frac{3\pi }{4})+i\sin(\frac{3\pi }{4})$
asked
Feb 12, 2017
in
Complex Variables
by
piyag476
(
1.5k
points)
gate2013ee
complexnumber
trigonometry
0
votes
0
answers
11
GATE201351
The state variable formulation of a system is given as $\begin{bmatrix} x^\cdot_1 \\ x^\cdot_2 \end{bmatrix}=\begin{bmatrix} 2 & 0\\ 0 & 1 \end{bmatrix}\begin{bmatrix} x_1\\ x_2 \end{bmatrix}+\begin{bmatrix} 1\\ 1 \end{bmatrix}u$ , $x_1(0)=0$ , $x_2(0)=0$ ... $1\frac{1}{2}e^{2t}\frac{1}{2}e^{t}$ $e^{2t}e^{t}$ $1e^{t}$
asked
Feb 12, 2017
in
Linear Algebra
by
piyag476
(
1.5k
points)
gate2013ee
linearalgebra
stateequations
systemoflinearequations
0
votes
0
answers
12
GATE20143GA8
The Gross Domestic Product $(GDP)$ in Rupees grew at $7$% during $2012$$2013$.For international comparison, the $GDP$ is compared in $US$ Dollars $(USD)$ after conversion based on the market exchange rate. During the period $2012$$2013$ ... $USD$ during the period $2012$$2013$ increased by $5 $% decreased by $13$% decreased by $20$% decreased by $11$%
asked
Feb 12, 2017
in
Engineering Mathematics
by
makhdoom ghaya
(
9.3k
points)
gate2014ee3
grossdomesticproduct
marketexchangerate
0
votes
0
answers
13
GATE201522
We have a set of $3$ linear equations in $3$ unknowns. $'X \equiv Y'$ means $X$ and $Y$ are equivalent statements and $'X \not\equiv Y'$ means $X$ and $Y$ are not equivalent statements. P: There is a unique solution. Q: The equations are linearly independent. R: All ... $P \equiv Q \not\equiv R \equiv S$ $P\not\equiv Q \not\equiv R \not\equiv S$
asked
Feb 12, 2017
in
Linear Algebra
by
makhdoom ghaya
(
9.3k
points)
gate2015ee2
linearequations
eigenvalues
0
votes
0
answers
14
GATE201513
If the sum of the diagonal elements of a $2 \times 2$ matrix is $6$, then the maximum possible value of determinant of the matrix is ________
asked
Feb 12, 2017
in
Calculus
by
makhdoom ghaya
(
9.3k
points)
gate2015ee1
diagonalelements
determinant
matrix
numericalanswers
0
votes
0
answers
15
GATE201523
Match the following. P. Stokes’s Theorem 1. $∯ D.ds = Q$ Q. Gauss’s Theorem 2. $\oint f(z) dz =0$ R. Divergence Theorem 3. $\int \int \int (\triangledown. A) dv = ∯ A. ds$ S. Cauchy’s Integral Theorem 4. $\int \int (\triangledown \times A).ds = \oint A. dl$ (A) P2 Q1 R4 S3 (B) P4 Q1 R3 S2 (C) P4 Q3 R1 S2 (D) P3 Q4 R2 S1
asked
Feb 12, 2017
in
Linear Algebra
by
makhdoom ghaya
(
9.3k
points)
gate2015ee2
gausselimination
integraltheorem
0
votes
0
answers
16
GATE20141GA4
If $(z+1/z)^2 = 98,$ compute $(z^2+1/z^2).$
asked
Feb 12, 2017
in
Linear Algebra
by
makhdoom ghaya
(
9.3k
points)
gate2014ee1
complexnumber
numericalanswers
0
votes
0
answers
17
GATE20143GA5
The table below has questionwise data on the performance of students in an examination. The marks for each question are also listed. There is no negative or partial marking in the examination. ... $1.34$ $1.74$ $3.02$ $3.91$
asked
Feb 12, 2017
in
Probability & Statistics
by
makhdoom ghaya
(
9.3k
points)
gate2014ee3
mean
stats
0
votes
0
answers
18
GATE20152GA8
If $p, q, r, s$ are distinct integers such that: $f(p, q, r, s) = \max (p, q, r, s)$ $g(p, q, r, s) = \min (p, q, r, s)$ $h(p, q, r, s)$ = remainder of $(p \times q) / (r \times s)$ if $(p \times q) > (r \times s)$ or remainder of ... $f(p, q)$. What is the value of $fg (h (2, 5, 7, 3), 4, 6, 8)$ ?
asked
Feb 12, 2017
in
Linear Algebra
by
makhdoom ghaya
(
9.3k
points)
gate2015ee2
remainder
operator
num
numericalanswers
0
votes
0
answers
19
GATE201346
A function $y=5x^2+10x$ is defined over an open interval $x$ = $(1, 2)$ . At least at one point in this interval, $\dfrac{\mathrm{dy} }{\mathrm{d} x}$ is exactly $20$ $25$ $30$ $35$
asked
Feb 12, 2017
in
Calculus
by
piyag476
(
1.5k
points)
gate2013ee
calculus
directionalderivatives
gaussstheorem
0
votes
0
answers
20
GATE201412
Let $f(x)=xe^{x}$ . The maximum value of the function in the interval $(0,\infty)$ is $e^{1}$ $e$ $1e^{1}$ $1+e^{1}$
asked
Feb 12, 2017
in
Differential Equations
by
makhdoom ghaya
(
9.3k
points)
gate2014ee1
interval
functions
Page:
« prev
1
2
3
4
next »
Welcome to GATE Overflow, Electrical, where you can ask questions and receive answers from other members of the community.
Follow @csegate
Gatecse
912
questions
40
answers
10
comments
27,648
users