GO Electrical
0 votes

Consider a system governed by the following equations $$ \frac{dx_1(t)}{dt} = x_2(t)-x_1(t) \\ \frac{dx_2(t)}{dt} = x_1(t)-x_2(t)$$ The initial conditions are such that $x_1(0)<x_2(0)< \infty$. Let $x_{1f}= \underset{t \to \infty}{\lim} x_1(t)$ and $x_{2f}=\underset{t \to \infty}{\lim} x_2(t)$. Which of the following is true?

  1. $x_{1f}<x_{2f}<\infty$
  2. $x_{2f}<x_{1f}<\infty$
  3. $x_{1f}<=_{2f}<\infty$
  4. $x_{1f}=x_{2f}=\infty$
in new by (5.4k points)
edited by

Please log in or register to answer this question.

Answer:
Welcome to GATE Overflow, Electrical, where you can ask questions and receive answers from other members of the community.

847 questions
38 answers
10 comments
26,458 users