The $SOP$ (sum of products) form of a Boolean function is $\sum (0,1,3,7,11)$, where inputs are $A$,$B$,$C$,$D$
($A$ is $MSB$, and $D$ is $LSB$). The equivalent minimized expression of the function is
- $(\bar{B}+C)(\bar{A}+C)(\bar{A}+\bar{B})(\bar{C}+D)$
- $(\bar{B}+C)(\bar{A}+C)(\bar{A}+\bar{C})(\bar{C}+D)$
- $(\bar{B}+C)(\bar{A}+C)(\bar{A}+\bar{C})(\bar{C}+\bar{D})$
- $(\bar{B}+C)(A+\bar{B})(\bar{A}+\bar{B})(\bar{C}+D)$