If $p, q, r, s$ are distinct integers such that:

$f(p, q, r, s) = \max (p, q, r, s)$

$g(p, q, r, s) = \min (p, q, r, s)$

$h(p, q, r, s)$ = remainder of $(p \times q) / (r \times s)$ if $(p \times q) > (r \times s)$ or remainder of $(r \times s) / (p \times q)$ if $(r \times s) > (p \times q)$

Also a function $fgh (p, q, r, s) = f (p, q, r, s) \times g (p, q, r, s) \times h (p, q, r, s)$

Also the same operations are valid with two variable functions of the form $f(p, q)$.

What is the value of $fg (h (2, 5, 7, 3), 4, 6, 8)$ ?